In this post you will able to know how virtual reality  actually works .


Firstly lets know what is virtual reality , virtual reality is the computer -generated scenario that simulates a realistic experience to the viewers . The environment can be similar to the real world to create lifelike experience grounded in  reality of science fiction Augmented reality system  can also be considered as a form of VR (Virtual Reality ) that layers virtual  information over live camera feed into a headset or  through a smart phone or tablet devices .

Virtual reality allows the user to be immersed into a virtual world, unlike regular screens in front of the user which do not allow for such an experience. VR can include 4 of the 5 senses, including vision, hearing, touch and possibly even smell. With this power, VR can can take people for a virtual world fairly easily. The only current problems are the availability of such hardware and the price at which it can be purchased. Google is combating this with Google Cardboard and the Daydream ecosystem. But as it currently stands, high quality VR is not possible without spending quite a bit of cash to get a powerful computer and a headset go with it. As prices fall on graphics cards that can run desktop VR at the required settings and with Google making the Daydream ecosystem, it will not be long before high quality content is readily availabe


In virtual reality (VR) the environment is simulated to look lifelike , which tricks your brain to believe that your in a 3D world . The first way VR does this is with the stereoscopic display. This works by displaying two slightly different angles of the scene to each eye, simulating depth. This along with other ways to simulate depth like parallax (farther objects to you seem to move slower), shading and techniques create an almost life like experience. An example of what a looks like can be found below

As you can see, the angle of the helicopter  is slightly different on each side, but when you actually put on the headset and play the game, everything lines up perfectly. The way the stereoscopic screen looks varies platform to platform as each headset differs quite a bit in the way it display content, the above image is from a game made for Google Cardboard using Unreal Engine.



This is arguably one of the most important parts of virtual reality. It is one thing to just look around a 3D space, but to be able to move around it and touch and interact with objects is a completely different ballgame. On Android, your phone’s accelerometer, gyroscope and magnetometer are used to achieve movement of the headset. The accelerometer is used to detect three dimensional movement with the gyroscope being used to detect angular movement followed by the magnetometer for position relative to the Earth.

Using these sensors, your phone can accurately predict where you are looking at any given time while using VR. With the announcement Google Daydream, Android VR users will be able to use a separate phone as a controller to move and interact within the environment. Desktop VR like the HTC Live and Oculus Rift either uses a controller according to the will for different purpose . using computer vision VR accuracy can be greatly improved  having by  cameras and other sensors set up in the room you are using the VR headset.


The experience would not be complete without audio. Since this is a virtual world, you want the audio to be as close to real life as possible. This is done by spatial audio, also known as 3D audio, which is the virtual placement of sound in a three dimensional environment emulating sounds from different angles. I made a quick representation in Unreal Engine to show how different speakers could be placed in an environment to emulate different sounds coming from any location in the scene. With this technology, virtual reality becomes a more immersive experience and overall improves the quality of VR by quite a bit.


Specifically on the desktop, VR requires a lot of horsepower for a smooth, consistent experience. In fact, the majority of people who own desktops are unable to use virtual reality, as their computers are not powerful enough. Steam recommends an Intel i5 Haswell or newer and either an Nvidia GTX 970 or AMD Radeon R9 290 for a smooth experience.

The main issue facing hardware is that for the Vive and Rift, your PC doesn’t just have to run a 1080p game at 60 FPS, it has to run at a higher resolution at 90 FPS. Most hardware can not do that.

It turns out that there is a very limited number of computers with these specs or better, so this will more than likely slow down the adoption of VR on the desktop. For mobile however, any Android phone with KitKat (4.4) or higher should not have any issues with basic VR functionality. Daydream features do require at least a Nexus 6P at the time of writing however.

this is it for this topic .


Leave a Comment

Your email address will not be published. Required fields are marked *